Computational study of an excitable dendritic spine.

نویسندگان

  • I Segev
  • W Rall
چکیده

1. A compartmental model was employed to investigate the electrical behavior of a dendritic spine having excitable membrane at the spine head. Here we used the Hodgkin and Huxley equations to generate excitable membrane properties; in some cases the kinetics were modified to get a longer duration action potential. Passive membrane was assumed for both the spine stem and the dendritic shaft. Synaptic input was modeled as a transient conductance increase (alpha-function) that lies in series with a battery (that corresponds to an excitatory or inhibitory synaptic equilibrium potential). 2. Threshold conditions for an action potential at the spine head membrane were found to be sensitive to the membrane properties at the spine head and to the conductance loading provided by the spine stem and the dendritic tree. Increasing either the number or the open times of the excitable channels had the effect of lowering spike threshold voltage. Increasing the spine stem resistance (RSS) or increasing the input resistance at the spinal base (RSB) also lowered the spike threshold voltage. Because a preexisting dendritic depolarization reduced the spine stem current, this lowered the spike threshold voltage, and this threshold was also shown to be sensitive to the distribution of membrane potential along the dendrite. 3. For each set of spine and dendritic parameters, there was an optimal range of RSS values for which the excitable properties at the spine head membrane resulted in maximal amplification of the dendritic excitatory postsynaptic potential (EPSP), when compared with that produced by a corresponding passive spine. This optimal range depended (with nonlinear sensitivity) on the properties of the voltage-gated channels at the spine head membrane. The maximal amplification found (for each of several sets of parameters) ranged from two to thirteen times. 4. Near this optimal range of RSS values, there was maximal (nonlinear) sensitivity of the dendritic EPSP amplitude to small changes in RSS. A minor decrease resulted in a subthreshold response at the spine head, and this resulted in a large decrease in the EPSP amplitude at the spine base. Increasing the value of RSS above this optimal range decreased the amount of spine stem current flowing to the spine base (by Ohm's law); this decreased the EPSP amplitude at the spine base. The demonstration of this optimum agrees with earlier expectations and results. 5. Excitable dendritic spines can be seen to provide an anatomical arrangement that economizes both excitable and synaptic channels. A small number of these channels (located in spine head membrane) can produce a large dendritic depolarization.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impact of time dependent changes in spine density and spine shape on the input - output properties of a dendritic branch : A computational study

Populations of dendritic spines can change in number and shape quite rapidly as a result of synaptic activity. Here, we explore the consequences of such changes on the input-output properties of a dendritic branch. We consider two models: one for activity-dependent spine densities and the other for calcium mediated spine-stem restructuring. In the activity-dependent density model we find that f...

متن کامل

Impact of time-dependent changes in spine density and spine shape on the input-output properties of a dendritic branch: a computational study.

Populations of dendritic spines can change in number and shape quite rapidly as a result of synaptic activity. Here, we explore the consequences of such changes on the input-output properties of a dendritic branch. We consider two models: one for activity-dependent spine densities and the other for calcium-mediated spine-stem restructuring. In the activity-dependent density model we find that f...

متن کامل

Analysis of an excitable dendritic spine with an activity-dependent stem conductance.

Dendritic spines are the major target for excitatory synaptic inputs in the vertebrate brain. They are tiny evaginations of the dendritic surface consisting of a bulbous head and a tenuous stem. Spines are considered to be an important locus for plastic changes underlying memory and learning processes. The findings that synaptic morphology may be activity-dependent and that spine head membrane ...

متن کامل

ESSAYS ON APS CLASSIC PAPERS What do dendrites and their synapses tell the neuron?

This essay looks at the historical significance of four APS classic papers that are freely available online: Rall W. Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30: 1138–1168, 1967 (http://jn.physiology.org/cgi/reprint/30/5/1138). Rall W, Burke RE, Smith TG, Nelson PG, and Frank K. Dendritic location of syn...

متن کامل

Active Dendrites Enhance Neuronal Dynamic Range

Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 60 2  شماره 

صفحات  -

تاریخ انتشار 1988